Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Development of Image Processing Algorithms for Genomic Studies. Microarray image Processing algorithms allow scientist to analyze the expression of thousands of genes at a time
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Biju V G
ISBN: 9786203411577
Год издания: 1905
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 152
Издательство: LAP LAMBERT Academic Publishing
Цена: 37125 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли экономики:Код товара: 712668
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: The advent of microarray imaging technology has led to an enormous progress in life sciences by allowing scientists to analyze the expression of thousands of genes at a time. The important stages involved in microarray image analysis are microarray gridding, segmentation, information extraction and gene expression computation. The existing gridding and spot segmentation algorithms are not suitable for microarray image processing due to variation in spot size, shape, resolution, spatial deviation and noise in the images from database to database. In addition to this, the existing microarray spot segmentation algorithms use preprocessing as a solution for improving spot segmentation accuracy in the case of noisy spots. It improves segmentation accuracy but affect the precise computation of gene expression values. To overcome this issue a grid line refinement method and three improved spot segmentation methods using fuzzy clustering algorithms are proposed. <p>The advent of microarray imaging technology has led to an enormous progress in life sciences by allowing scientists to analyze the expression of thousands of genes at a time. The important stages involved in microarray image analysis are microarray gridding, segmentation, information extraction and gene expression computation. The existing gridding and spot segmentation algorithms are not suitable for microarray image processing due to variation in spot size, shape, resolution, spatial deviation and noise in the images from database to database. In addition to this, the existing microarray spot segmentation algorithms use preprocessing as a solution for improving spot segmentation accuracy in the case of noisy spots. It improves segmentation accuracy but affect the precise computation of gene expression values. To overcome this issue a grid line refinement method and three improved spot segmentation methods using fuzzy clustering algorithms are proposed. </p>
Ключевые слова: image processing, Microarray image, Fuzzy Clustering