Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Hindi Handwritten Character Recognition Using Deep Neural Network.
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Dr. Abhishek R. Mehta,Dr. Subhashchandra Desai and Dr. Ashish Chaturvedi
ISBN: 9786203928808
Год издания: 1905
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 460
Издательство: LAP LAMBERT Academic Publishing
Цена: 65973 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 713510
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Handwritten character affirmation is a huge issue of account examination and affirmation. Composing has seen diverse such works that do this endeavour. A larger piece of this work exists for Latin, Chinese, and Arabic anyway unequivocally fewer works exist for Hindi substance. This hypothesis is an undertaking towards thinking about existing work and develop new methodologies to improve the exactness of separated interpreted Hindi character affirmation structures. A proposed incorporate extraction methodology, to be explicit frontal zone sub-examining (FS), which relies upon the level and vertical projection computation at each granularity level to find the division canters or feature canters. We further proposed a methodology through which the estimation of level and vertical projection at each granularity level ends up being brisk and capable by using vertical and even central pictures. If the model picture is 90 by 90 estimated by FS procedure at granularity level 3, 62100 extension (+) errands are expected to find 85 division canters, while in our proposed strategy only 18000 increments (+) exercises are adequate to deal with comparative features.
Ключевые слова: Optical Character Recognition, Handwritten Character Recognition, Hindi Character Recognition, Hindi Handwritten Character Recognition