Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
DIABETES DETECTION USING DATA MINING TECHNIQUES. Application of Data Mining
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: L. K. Vishwamitra,Vivek Vaidya and Arvind Kumar Sharma
ISBN: 9786205508510
Год издания: 1905
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 196
Издательство: LAP LAMBERT Academic Publishing
Цена: 47399 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Diabetes mellitus is seen as a disease which affects highly social, human and financial expenses for a nation. One of the most important reasons for creating machine learning systems is that in many areas experience is insufficient, and the codification of the knowledge that describes it is limited, fragmented and, therefore, incomplete. Artificial intelligence has made significant advances in fields such as education, agriculture and healthcare, where it can detect and treat diseases like cancer and diabetes long before traditional methods.The first phase of this study will present a comparative neural network analysis and will implement a neural network classifier optimized by Firefly algorithm to predict diabetes diagnosis based on factors mentioned in patients.The second phase of this work will develop a multi-scale convolutional neural network (MCNN) model for the early diagnosis of diabetes mellitus. The detection technique is based on a proposed tanning model by analyzing data from diabetic and non-diabetic patients from the PIMA Indian database.
Ключевые слова: Diabetes mellitus, Firefly Algorithm, MCNN, Neural Network, NDDG, PIMA Database, Random Forest, ReLU, SVM, WHO