Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

AN EFFICIENT FEATURE EXTRACTION AND CLASSIFICATION BASED MULTI-LEVEL. DEEP LEARNING FRAMEWORK FOR DIABETIC RETINOPATHY DETECTION

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Shaik Akbar,Kamisetti Nageswara Rao and Divya Midhunchakkaravarthy
ISBN: 9786205529089
Год издания: 1905
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 188
Издательство: LAP LAMBERT Academic Publishing
Цена: 50665 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 715854
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: This book provides An Efficient Feature Extraction and Classification based Multi –level Deep Learning Frame work for Diabetic Retinopathy Detection model has better efficiency compared to the state of art of conventional approaches. Diabetic retinopathy is a micro vascular disease that induces a number of changes in the retina. Micro aneurysms, haemorrhage exudates, and the development of new blood vessels all alter the diameter of the blood vessel. Most of the conventional multi-class diabetes retinopathy has different issues such as problem of over-segmentation, classification precision, recall and error rate on high dimensional features space. Ensemble feature selection measures are used to filter the essential features in the large feature space. In this work, a hybrid ensemble feature selection based multiple classification models are used to improve the classification accuracy on multi-class diabetes retinopathy databases. In this work, a novel image segmentation, ensemble feature extraction measures, and multiple classification approaches are used to find the majority voting in the classification problem.
Ключевые слова: Diabetic retinopathy, Microaneurysms, Convolution Neural Networks, hybrid SVM, Ensemble feature selection, Image segmentation