Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

Evaluation of Machine Learning Classification Techniques in IDS. An exhaustive survey on the performance of the top four machine learning classifiers in the intrusion detection system

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Amirhossein Abdi
ISBN: 9786204742229
Год издания: 1905
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 100
Издательство: LAP LAMBERT Academic Publishing
Цена: 34793 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 716433
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: With the rapid development of information technology, computer networks are exposed to a wide variety of vulnerabilities and an increasing number of security threats. Intrusive traffics affects the normal functionality of the network’s operation. Thus, a need for more intelligent and sophisticated security controls such as intrusion detection systems (IDSs) is necessary. Since IDS has to deal with problems such as large network tra?c volumes and di?culty to realize decision boundaries between normal and abnormal behaviors, classification plays an important role in the detection. Machine learning approaches have been extensively used in network intrusion detection techniques because they require less human expert knowledge, significantly reduce the burden of analyzing huge volumes of network traffic, and provide more precise results by separating data into different classes (normal and abnormal) as correctly as possible with the help of a model. The experimental results indicate that using significant features instead of all features improved the performance of classification techniques based-IDS, and hence shows significant improvement in detecting the intrusions correctly.
Ключевые слова: Intrusion Detection, Machine Learning, Feature Selection, Decision Tree, Naive bayes, K-Nearest Neighbor, Support Vector Machine, normalization, NSL-KDD, Artificial Intelligence