Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Novel Disease Prediction System Using Hybrid Deep Learning Techniques.
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Sandhiya S and Palani U
ISBN: 9786206161769
Год издания: 1905
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 164
Издательство: LAP LAMBERT Academic Publishing
Цена: 46262 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 759034
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: This Book has been carried out through three different models with a different combination of feature selection and deep learning techniques. The first model proposed the combination of the new Enhanced Grey-Wolf Optimization-based Feature Selection Algorithm (EGWO-FSA) and Deep Belief Network (DBN) for diagnosing heart, diabetes, and cancer disease. The second model proposed on disease prediction system which is developed by using the novel Genetic Binary Cuckoo Optimization Algorithm (GBCOA) and new Convolutional-Recurrent Neural Network (C-RNN) for identifying the heart, cancer, and diabetic diseases. The third technique implements a novel disease prediction system that has been developed by using the new Incremental Feature Selection Algorithm (IFSA) and novel Convolutional Neural Network with Temporal features (T-CNN) for predicting heart, diabetic, and cancer diseases., The proposed techniques are evaluated by conducting various experiments and achieved better performance in the proposed disease prediction system than the existing systems in terms of prediction accuracy and computation time.
Ключевые слова: Deep Learning, Feature Selection, Artificial Intelligence, Machine Learning, Disease Prediction, Convolutional neural networks, Recurrent Neural Network, Healthcare, IoT, deep belief network