Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

Comparison of ANN and RSM in Predicting the Strength of Concrete. ARTIFICIAL NEURAL NETWORK (ANN) AND RESPONSE SURFACE METHODOLOGY (RSM) MODELS

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Dr. Panga Narasimha Reddy,Dr. Bode Venkata Kavyatheja and Dr. B. Damodhara Reddy
ISBN: 9786206163015
Год издания: 1905
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 68
Издательство: LAP LAMBERT Academic Publishing
Цена: 25429 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 759187
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: This study presents a comparative study between Artificial Neural Network (ANN) and Response Surface Methodology (RSM) in predicting the compressive strength of high strength concrete. The comparison was made based on the same experimental datasets. The inputs investigated in this study were percentage of Cement, Silica fume and coarse aggregate. The methods employed in ANN and RSM were feedforward neural network and face-centered central composite, correspondingly. The comparison between the two models showed that RSM performed better than ANN with coefficient of determination (R2) closer to 1 with 0.9959. In addition, all the predicted results by RSM against the experimental results fell within 10% margin. For ANN model, however, three of its predicted results were outside the 10% margin. Silica fume was also found to have greater impacts on the compressive strength of concrete than coarse aggregate.
Ключевые слова: artificial neural network, Response surface methodology, compressive strength, Concrete