Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Study of Advanced ML & DL Models for Credit Card Fraud Detection. A Comprehensive Survey on Advanced Techniques of Machine Learning and Deep Learning Approaches
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Khondekar Lutful Hassan and Samrat Karmakar
ISBN: 9786206180661
Год издания: 1905
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 180
Издательство: LAP LAMBERT Academic Publishing
Цена: 46830 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 760548
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Machine learning and deep learning (DL) techniques have shown promising results in detecting fraudulent activities. In this thesis, we propose approaches for credit card fraud detection that combine supervised and unsupervised learning techniques. We apply feature engineering techniques to extract relevant features from the credit card transaction dataset, followed by anomaly detection models that combine supervised ML, semi-supervised ML, and DL techniques. We analyze the dataset using various parameters and methods. Our study on various ML and DL methods in detecting fraudulent transactions are Artificial Neural Networks (ANN), Convolutional Neural Networks (CNN), Support Vector Classifier (SVC) with Autoencoder, Linear Regression with Autoencoder, K-Nearest Neighbors (KNN), XGBoost, CatBoost, Adaboost, Gradient Boosting, Random Forest, Decision Tree, K-Means Clustering, LightBGM, Logistic Regression, logistic regression with undersampled data, Naive Bayes achieves, SVC achieves, Isolation Forest, and Local Outlier Factor. We evaluate our approach on a real-world credit card transaction dataset named Creditcard.csv from the Kaggle dataset.
Ключевые слова: Machine Learning, Deep Learning, fraud detection, ANN, CNN