Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Convolution Recurrent Neural Networks for Image Classification. Enhancing Visual Communication and Expression in Instant Messaging Platforms
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: SREE LAKSHMI DONE
ISBN: 9786206738930
Год издания: 1905
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 72
Издательство: LAP LAMBERT Academic Publishing
Цена: 27521 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: "Utilizing Convolution Recurrent Neural Networks for Image Classification in Instant Messengers" delves into the integration of CRNN models within instant messengers for effective image classification. This book explores how CRNN techniques can enhance the accuracy and efficiency of image recognition, enabling seamless visual communication and expression. The author examines the methodology and implementation of CRNN models, emphasizing their advantages in handling complex visual data. The book discusses the benefits of employing CRNN in instant messengers, including improved classification accuracy and robustness to variations in image content. It also acknowledges the challenges associated with CRNN, such as model complexity and training data requirements. Through this comprehensive exploration, the book offers valuable insights into the potential of CRNN for transforming image classification in instant messengers. It serves as a valuable resource for researchers, developers, and practitioners interested in leveraging advanced neural network techniques for enhancing image-based communication in messaging platforms.
Ключевые слова: Recurrent neural networks, Image classification, Instant messengers, Social Media, Clustering