Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

APPLICATION OF ARTIFICIAL NEURAL NETWORK TECHNIQUE. Rainfall Forecasting

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: J. M. Chavda,S. K. Chavda and J. J. Makwana
ISBN: 9786206753469
Год издания: 1905
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 84
Издательство: LAP LAMBERT Academic Publishing
Цена: 25997 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли экономики:
Код товара: 761176
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: Rainfall is very important parameter in hydrological model. Many techniques and models have been developed for rainfall forecasting. This study present a method of rainfall forecasting by developing an ANN- based model using major weather variables such as dry bulb temperature, wet bulb temperature, relative humidity, pan evaporation, vapour pressure as inputs while the rainfall as the target output. As part of the ANN model development procedures, the data sets of 11956 data in the study area was partitioned into two parts with 70% of the entire data sets used as the training data while the remaining 30% used as the testing and the validation data. The proposed model has been able to predict values with suitable results. For the evaluation of the results and the ability of the developed prognostic models, appropriate statistical indexes such as the coefficient of determination (R2), the Root mean square error (RMSE), Mean square error (MSE), Nash-Sutcliffe efficiency (EF), Akaike information criteria (AIC), Bayesian information criteria (BIC) were used. The findings from this analysis showed that the ANN model 5-5-3-1 provides satisfactory results based on statistical indexes.
Ключевые слова: artificial neural network, Multilayer perceptron network, feed forward back propagation Algorithm, Rainfall Forecasting
Похожие издания
Отрасли экономики: Машиностроение
Hashem Nowruzi and Mahdi Yousefifard
Application of Artificial Neural Network in Marine Engineering. .
2020 г.,  204 стр.,  мягкий переплет
Artificial Neural Networks (ANNs) are immensely interesting due to their capability to predict the complex system output with various input parameters. Accordingly, researchers are seeking to improve the efficiency of ANNs in predicting the various engineering problems. Therefore, in the present book, we tried to develop an iterative methodology...

43812 тг
Бумажная версия
Отрасли экономики: Приборостроение -> Производство электронных компонентов
Aritra Acharyya
Automatic Speaker Verification using Artificial Neural Networks. A Potential Application of Artificial Neural Networks.
2018 г.,  64 стр.,  мягкий переплет
This book is presenting a fresh look into the field of automatic speaker verification technique via artificial neural networks. It is intended as a text for postgraduate students in applied physics, electrical and electronics engineering. It can exclusively serve as a reference for the scientists who are working in the area of automatic speaker...

23350 тг
Бумажная версия
Отрасли знаний: Точные науки -> Информатика и программирование
Hossam Zaqoot,Adnan Aish and Samaher Abdeljawad
Application of Artificial Neural Networks for Predicting Water Quality. .
2017 г.,  88 стр.,  мягкий переплет
In the Gaza Strip the maximum amount of the drinking water is produced through small private desalination plants. The present book is concerned with using artificial neural network (ANN) technique to forecast and predict the next week concentrations of total dissolved solids (TDS), chloride, nitrate and magnesium of the product water quality in...

24203 тг
Бумажная версия
Отрасли экономики: Машиностроение
Ganesh Kawade and Sanjay Satpute
Optimization of CI Engine Performance Parameters by using ANN Software. Application of Artificial Neural Network (ANN) to check performance parameters of CI Engine that uses biodiesel as fuel.
2016 г.,  120 стр.,  мягкий переплет
The world is getting modernized and industrialized day by day, as result vehicles and engines are increasing. But energy resources used in these engines are costly and decreasing gradually. Development of cleaner alternative fuels and advanced power systems for vehicles and industries has become a high priority for many governments and Automobile...

32599 тг
Бумажная версия
Отрасли знаний: Точные науки -> Математика -> Статистика
Juli Majumder and Rumana Rois
An Application of Artificial Neural Network Model in GDP Forecasting. A comparative study of different forecasting model.
2013 г.,  100 стр.,  мягкий переплет
In recent year, the concern in forecasting of economy and modeling of macroeconomic structure is increasing because of frequent economic crisis. This book explores how a researcher can use statistical forecasting model especially Artificial Neural Network (ANN) model in forecasting performance and modeling the macroeconomic indicator like GDP....

29469 тг
Бумажная версия
Отрасли знаний: Точные науки -> Математика -> Статистика
Shashank Singh and Rangavajhala Subbaiah
Stochastic Disaggregation Modelling of Rainfall series. Application of Artificial Neural Network to Disaggregation of Rainfall Time Series.
2013 г.,  140 стр.,  мягкий переплет
Meteorological models generate fields of precipitation and other climatological variables as spatial averages at the scale of the grid used for numerical solution. The grid-scale can be large, particularly for general circulation models and disaggregation is required. Disaggregation models were introduced in hydrology by the pioneering work of...

36698 тг
Бумажная версия
Отрасли экономики: Промышленность в целом
Jayanta Kumar Basu and Monal Dutta
Application of Artificial Neural Network for Ibuprofen Adsorption. .
2013 г.,  52 стр.,  мягкий переплет
This discussion offers a systematic approach to predict the adsorption characteristics of a pharmaceutical pollutant, ibuprofen through artificial neural network. The artificial neural network is inspired by biological nervous system. Artificial neural networks are being extensively used for predicting the rate of adsorption of an adsorbent in...

27329 тг
Бумажная версия