Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

Arrhythmia Detection by using Generative Adversarial Network Method. Analysis and Interpretation of Arrhythmia

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Sanjay Sanamdikar,Satish Hamde and Vinayak Asutkar
ISBN: 9786206739135
Год издания: 1905
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 164
Издательство: LAP LAMBERT Academic Publishing
Цена: 46262 тг
Положить в корзину
Позиции в рубрикаторе
Сферы деятельности:
Код товара: 761363
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: This book explains how a deep generative adversarial network built on a large dataset may detect arrhythmias more accurately than physicians. Furthermore, feature extraction has traditionally been seen as an essential component of electrocardiogram arrhythmia classification The purpose of this research is to examine ECG arrhythmia classification using a deep dense generative adversarial network. The GAN architecture shown in this book can be taught to produce ECG signals that are comparable to real-world ECG signals. The results indicate that using a sequence-based strategy for all ECG-beat types substantially improves area under curve on our test set. Traditional architecture does not naturally address this structure, and therefore suffers from decreased performance when such a structure is informative. This book compares the proposed technique to kernel principle component analysis with incremental support vector regression, discrete wavelet transforms with incremental support vector regression and general sparse neural network. From obtained results, it is concluded that the proposed GAN technique is superior to these three methods with an overall accuracy of 97.44 percent.
Ключевые слова: arrhythmia, Generative Adversarial Network, Deep Neural Network, ELECTROCARDIOGRAPH, Short-Term Fourier Transform
Похожие издания
Отрасли экономики: Приборостроение -> Производство электронных компонентов
Raghu Nanjundegowda,Manjunatha K. N. and Kiran B.
Arrhythmia Detection Using machine Learning Techniques. .
2019 г.,  96 стр.,  мягкий переплет
One of the most powerful facilities for determining the condition of the heart is the Electrocardiogram (ECG). Automatic heart abnormality identification technique detects the several abnormalities or arrhythmia and decreases the physician’s workload thereby reducing their workload. The ECG analysis focuses on improving the accuracy levels and...

31747 тг
Бумажная версия