Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Wine Quality Analysis Using Artificial Intelligence and Machine Learning. AI AND ML Approach
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Pankaj Agarkar,ANITA MAHAJAN and Neha Sharma
ISBN: 9786206766896
Год издания: 1905
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 84
Издательство: LAP LAMBERT Academic Publishing
Цена: 27947 тг
Положить в корзину
Позиции в рубрикаторе
Сферы деятельности:Код товара: 761712
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: The wine quality is important for the consumers as well as for the wine industry. The traditional (expert wine tester) way of measuring wine quality might be expensive and time-consuming. Nowadays, machine learning models are foremost tools to replace human intervention. As a sub field of Artificial Intelligence (AI), Machine Learning (ML) aims to understand the structure of the data and fit it into models, which later can be used on unseen data to achieve the desired task. Machine Learning has been widely used in various sectors such as Businesses, Medical, and Astrophysics to name a few and many other scientific problems. Inspired by success of Artificial Intelligence in various different sectors here, we can use it for wine quality prediction based on various physicochemical properties of wine. Among various machine learning methods, we analyze the performance of Extremely randomized trees (Extra trees), Extreme Gradient Boosting (XG Boost) and Light gradient-boosting machine (Light GBM) ensemble ML methods. This work demonstrates how statistical data analysis can be used to identify the components that mainly control the wine quality prior to the production.
Ключевые слова: Machine Learning, Artificial Intelligence, Machine learning methods, wine quality.