Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Advanced Loan Eligibility Prediction Systems Using Deep Learning. An investigational Approach
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Melet Fikadu and Rajesh Sharma Rajendran
ISBN: 9786206779773
Год издания: 1905
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 92
Издательство: LAP LAMBERT Academic Publishing
Цена: 34509 тг
Положить в корзину
Позиции в рубрикаторе
Сферы деятельности:Код товара: 761964
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: A loan is a financial transaction in which one party, often a lender, lends money, commodities, or services to another party, known as the borrower, with the expectation of repayment in the future. Loans are often made with the idea that the borrower would repay the loan amount plus any relevant interest or fees over a set period of time. And the success and failure of these lending sectors depend on the ability to evaluate the credit risk, as it has become a significant role of financial institutions/banking sector to sanction loans. Based on their requirements and business rules they approved the loan after doing the all process manually which is time taking and is also Inefficient. Automating the process to identify loan eligibility is an efficient way to reduce the amount of time it takes and the credit risk. So, predicting if the loan applicant is eligible or not helps the banks to decide to start/not to start the sanctioning loan process.
Ключевые слова: CRNN, Loan eligibility Prediction, Deep Learning