Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Big Data Cyber Security Using Machine Learning. Cyber Security
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Kandru Arun Kumar,Anuradha Chinta and Kunchala Little Flower
ISBN: 9786206783206
Год издания: 1905
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 64
Издательство: LAP LAMBERT Academic Publishing
Цена: 27237 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 762300
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Cyber security in the context of big data is known to be a critical problem and presents a great challenge to the research community. Machine learning algorithms have been suggested as candidates for handling big data security problems. Among these algorithms, support vector machines (SVMs) have achieved remarkable success on various classification problems. However, to establish an effective SVM, the user needs to deny the proper SVM configuration in advance, which is a challenging task that requires expert knowledge and a large amount of manual effort for trial and error. Here we formulate the SVM configuration process as a bi-objective optimization problem in which accuracy and model complexity are considered as two conflicting objectives. We propose a novel hyper-heuristic framework for bi-objective optimization that is independent of the problem domain. This is the first time that a hyper-heuristic has been developed for this problem. The proposed hyper-heuristic framework consists of a high-level strategy and low-level heuristics.
Ключевые слова: Bigdata, Cyber security, Machine Learning