Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Performance Evaluation of Breast Cancer Histopathological Images. Segmentation Methodologies and Classification of Breast Cancer Histopathological Images
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Rajyalakshmi Uppada,Koteswararao Sanagapallela and Satya Prasad Kodati
ISBN: 9786206788027
Год издания: 1905
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 200
Издательство: LAP LAMBERT Academic Publishing
Цена: 47541 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли экономики:Код товара: 762831
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Image segmentation plays a crucial task in image processing, as the segmentation output will influence all the successive processes during image analysis. Segmentation approaches developed in literature have their pros and cons. The book presents various segmentation approaches for Haematoxylin and Eosin stained Breast Cancer histopathological images to classify as Benign/Malignant. The book described an Adaptive Structuring Element’s size Marker Controlled Watershed Approach. In this approach, Structuring Element map is constructed using the weighted variance method for detail components protection in the image. Two more hybrid integration Methodologies are proposed to handle critical image inhomogeneities. Local Clustering Image-Function from ASEMCWA is integrated with Novel Multi-phase Level Sets for segmentation of histopathological images. This hybrid approach solves the problem of images with blurred/weak edges at the cost of no reinitialization. To solve the gradient problem, an integrated approach of Non-Subsampled Contourlet transform and NMPLS is constructed. This book gives the Comparative Subjective performance of State-Of-Art Segmentation + Classification approaches.
Ключевые слова: Image segmentation, Breast Cancer (BC) tissue image processing, histopathological images, Classification of Breast Cancer Histopathological Images, Segmentation Methodologies