Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

Diabetes Prediction Using Feature Engineering Approach. Forecasting Diabetes Risk: Unleashing the Power of Feature Engineering and Hybrid Random Forest Algorithm

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Gunavathi Ramasamy and B Senthil Kumar
ISBN: 9786207458707
Год издания: 2024
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 192
Издательство: LAP LAMBERT Academic Publishing
Цена: 50807 тг
Положить в корзину
Ожидает определения тематики
Код товара: 881448
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: The fundamental notions behind diabetes mellitus and its types, causes, diagnosis, and significance in the prediction of DM. This technical work gives a short introduction to Data Mining and Machine Learning techniques for the prediction of diabetes mellitus. The different methodologies, techniques, and methods involved in predicting diabetes disease. Additionally, current advances in machine learning were highlighted, which have had a substantial influence on the identification and treatment of diabetes. The entire automatic disease prediction system utilizes data collection, noise removal, feature extraction, selection, and classification techniques. The described steps are examined in different authors perceptively to get the better knowledge about particular steps. The class imbalance problem on medical data and applied sampling technique is evaluated with different iteration which denotes the number of sampling process. Adaptive sampling technique is adopted for balancing the class in medical dataset. This improves the performance of the gradient boosting classifier that provides 97.78% accuracy.
Ключевые слова: Data Mining, Machine Learning, learning process
Похожие издания
RAGHAVA RAO N
Diabetes Prediction using Machine Learning..
2024 г.,  68 стр.,  мягкий переплет
Diabetes is a chronic disease with the potential to cause a worldwide healthcare crisis. According to International Diabetes Federation 382 million people are living with diabetes across the whole world. By 2035, this will be doubled to 592 million. To facilitate early detection, we are developing a website that employs a machine learning...

27379 тг
Бумажная версия
Отрасли знаний: Медицина -> Фармакология и фармацевтика
Srinivasa Rao Yarraguntla and Vinodkumar Mugada
MICROVASCULAR AND MACROVASCULAR COMPLICATIONS OF TYPE II DIABETES. PREDICTION USING MACHINE LEARNING.
1905 г.,  76 стр.,  мягкий переплет
The prevalence and incidence of type 2 diabetes are increasing at an alarming rate. Diabetes mellitus and its associated complications are a significant threat to global health. Diabetic nephropathy, neuropathy, retinopathy, cardiovascular diseases, and peripheral vascular disease are the various complications associated with type 2 diabetes,...

27663 тг
Бумажная версия
Сферы деятельности: Образование
Aarti Chugh and Charu Jain
Diabetes Prediction using Machine Learning. Machine Learning in Healthcare.
1905 г.,  52 стр.,  мягкий переплет
Diabetes is a constant illness with the possibility to cause an overall medical services emergency. Everyday many people are detected as diabetic and this number is increasing exponentially. Various tools and techniques have been designed to check whether person is diabetic or not. This book illustrates practical example of building the Diabetes...

26810 тг
Бумажная версия