Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

Outlier Detection using Soft Computing Techniques. Detecting Deviant Objects in Various Information Systems using Soft Computing Methods

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: T Sangeetha and Geetha Mary Amalanathan
ISBN: 9786207473892
Год издания: 2024
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 148
Издательство: LAP LAMBERT Academic Publishing
Цена: 43431 тг
Положить в корзину
Ожидает определения тематики
Код товара: 892762
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: With the growth of the digital era, data is largely available, so knowledge retrieval from those data is done by data mining algorithms. Among various data mining algorithms, finding outliers is crucial as their occurrence degrades system efficiency. The majority of the research was limited to detecting outliers in a single universe with a single granulation for numerical or categorical data. The existing machine learning outlier detection algorithms work well for quantitative data but they are not directly applied to qualitative, vague and imprecise data which produces ineffective results. There is also ambiguous, uncertain, incomplete, and indeterminate information that persists in this real world. These problems are handled in this research work using rough set theory, intuitionistic fuzzy, and neutrosophic sets. The proposed methodology rough entropy based weighted density outlier detection method has been designed to detect outliers for various information systems. The weighted density value for each object and attribute has been determined to detect outliers. So a true object will never be treated as an outlier.
Ключевые слова: Data Mining, Outliers, Rough Set Theory, Intuitionistic Fuzzy, Neutrosophic Sets
Похожие издания
Отрасли знаний: Точные науки -> Информатика и программирование -> Интернет и локальные сети
Navneet Kaur
Outlier Detection Using A New Hybrid Approach On Mixed Dataset. Outlier Detection Using A New Hybrid Approach On Mixed Dataset.
1905 г.,  64 стр.,  мягкий переплет
Data mining is a process of extracting hidden and useful information from the data. Outlier detection is a fundamental part of data mining and has huge attention from the research community recently. An outlier is data object that deviates from other observations. Detecting outliers has important applications in data cleaning as well as in the...

25124 тг
Бумажная версия