Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Global Solar Radiation Prediction. Using Artificial Neural NetworksCase study: the city of Er-Rachidia, Morocco
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Mohamed Khala,Houda Abouzid and Sara Teidej
ISBN: 9786204333809
Год издания: 2021
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 92
Издательство: Our Knowledge Publishing
Цена: 34044 тг
Положить в корзину
Ожидает определения тематики
Код товара: 893848
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: This book aims to develop a new RSG preversion model based on deep learning. This approach will be able to boost the prediction accuracy of RSG data. Subsequently, the present proposed algorithm effectively handles the dynamics of our targeted weather component by integrating a recurrent and dynamic model named LSTM neural network with an autoregressive process. The raw data available for training this model is divided into two sets, the first is used for the training phase while the second is reserved for testing. The specific objective therefore is to generate accurate semi-hourly RSG forecasts at the level of the city of Er-Rachidia, MOROCCO (Latitude: 31°55′53″N; Longitude: 4°25′35″ W; Elevation: 1039 m), while adopting a powerful learning algorithm named Adam. The indices and results established in this study demonstrate the robustness and confidence that can be adopted to this model which can provide power system managers with reliable forecasts to ensure better management of solar energy and power service systems.
Ключевые слова: Artificial intelligence, Machine Learning, Deep Learning, Artificial Neural Networks, LSTM, Forecasting, Solar Radiation
Похожие издания
Отрасли знаний: Естественные науки -> Физика Janaki Awasthi and khem Narayan Poudyal Estimation of global solar radiation using meteorological parameters. . 2018 г., 104 стр., мягкий переплет In this study measured data of global solar radiation are compared with model estimated values. However, there is no sufficient advanced tools for comparison of same with satellite GSR.It is now the best time to evaluate ground based total global solar radiation with satellite value for further research. In addition, study of influencing factors... | 34471 тг | |
Отрасли знаний: Естественные науки -> Физика Yushau Sulaiman Muhammad and Abdullahi Bello Umar Analysis of Empirical Models for Estimating Global Solar Radiation. Correlation with Meteorological Data. 2017 г., 68 стр., мягкий переплет Global solar radiation data are essential in the design and study of solar energy conversion devices. In this regard, different empirical models based on Angstrom-Prescott model were selected to estimate the monthly average daily global solar radiation (H), on a horizontal surface using sunshine duration, relative humidity and temperature. The... | 23152 тг | |
Отрасли экономики: Машиностроение Jonathan Kuje Yohanna A Model for Estimating Global Solar Radiation for Makurdi Nigeria. . 2016 г., 116 стр., мягкий переплет There are scanty solar radiation measurement stations in Nigeria so there is the need to develop a model for estimating a monthly average daily global solar radiation for a location. This book has shown different equations or models developed by different researchers for different locations and countries. The work has shown a new solar constant to... | 34897 тг |