Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

Privacy Preserving Data Mining. Methods, Execution and Efficiency

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Shampa Bhattacharyya and Amit Bhattacharyya
ISBN: 9783659669071
Год издания: 2015
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 100
Издательство: LAP LAMBERT Academic Publishing
Цена: 29469 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 143012
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: Data mining is under attack from privacy advocates because of a misunderstanding about what it actually is and a valid concern about how it’s generally done. This analysis shows how technology from the security community can change data mining for the better, providing all its benefits while still maintaining privacy. Recently, a new class of data mining methods, known as privacy preserving data mining (PPDM) algorithms has been developed by the research community working on security and knowledge discovery. The aim of these algorithms is the extraction of relevant knowledge from large amount of data, while protecting at the same time sensitive information. Several PPDM techniques have been developed that allow one to hide sensitive item sets or patterns, before the data mining process is executed, such as randomization, k anonymity, data perturbation, secure multiparty computation etc.We mainly analysis two most general & secure approach of PPDM – Data Perturbation &Secure Multiparty Computation. Based on the analysis, the solution for PPDM is developed for demonstration. This Analysis should be especially useful to professionals in Cryptography and Data Mining fields.
Ключевые слова: cryptography, Data Mining, Privacy, Secure Multiparty Computation, Data Perturbation, WEKA tools, Secure Sum, Trusted Third Party technique
Похожие издания
Отрасли экономики: Промышленность в целом
Ashwini J. Sawakhande
Privacy preserving Data Mining by Inverse Frequent Item Set Mining. Data Mining Approach.
1905 г.,  64 стр.,  мягкий переплет
An emerging research topic in data mining, known as privacy-preserving data mining (PPDM) is discussed in this book. It is an application of data mining research in response to privacy security in data mining. It is called a privacy-enhanced or privacy-sensitive data mining. Preservation of privacy in data mining has emerged as an absolute...

25287 тг
Бумажная версия
Отрасли знаний: Точные науки -> Информатика и программирование
R Padmaja Kishore
SLICING : A Privacy Preserving Data Publishing Mechanism. .
2019 г.,  84 стр.,  мягкий переплет
This article helps to understand slicing, a new operation which outperforms the conventional operations like Generalization and Bucketization. Slicing allows to do both Horizontal and Vertical Partition .Slicing protects Identity Disclosure with better data utility.slicing finds correlation between attributes and clusters the attributes using...

24061 тг
Бумажная версия
Отрасли знаний: Точные науки -> Информатика и программирование
Kamakshi Pille
Privacy Preserving Data Mining Algorithms. .
2019 г.,  116 стр.,  мягкий переплет
The greatest contribution to researchers, who are working on Privacy preservation issues in data mining. The author explores various privacy issues while performing data mining on large databases. Motivated by the privacy issues related to data mining operations in various domains, this work focuses on PPDM algorithms. Privacy issues have thrown...

27134 тг
Бумажная версия
Сферы деятельности: Предпринимательская деятельность -> Менеджмент
Kuncham Sreenivasa Rao,Changalasetty Suresh babu and Avula Damodaram
Correlation based approach for hiding sensitive items in data mining. A novel approach for Privacy Preserving Data Mining.
2018 г.,  168 стр.,  мягкий переплет
The main goal of data mining is to extract high level or hidden information from large databases. Along with the advantage of extracting useful pattern, it also poses threats of revealing user’s sensitive information. We can hide sensitive information of the user by using privacy preservation data mining(PPDM). In data mining, association rule...

39144 тг
Бумажная версия
Отрасли знаний: Общественные науки -> Экономика
V.S. Thiyagarajan
Privacy Preserving in Big Datasets. .
2016 г.,  164 стр.,  мягкий переплет
The main objective of this work is to develop privacy preserving clustering process with cost minimization for Big Data Processing. The aim of privacy preserving calculations is to extricate significant learning from a big amount of information while ensuring data were collected in a delicate way. The basic motive of the current investigation is...

39002 тг
Бумажная версия
Отрасли знаний: Точные науки -> Информатика и программирование
Sridhar Mandapati
Privacy Preserving Data Mining using Optimization Methods. .
2014 г.,  128 стр.,  мягкий переплет
PPDM using optimization methods brings you up-to-date with various PPDM Algorithms, Randomization Method, Group Based Anonymization, Distributed Privacy-Preserving Data Mining and k-Anonymous Data Mining discussed. The performance of classification accuracy and the computational time of various data mining algorithms with and without anonymized...

36272 тг
Бумажная версия
Отрасли экономики: Промышленность в целом
Hitesh Chhinkaniwala and Sanjay Garg
Privacy Preserving Data Mining - Issues & Techniques. Preserving privacy of data streams and large data sets while mining.
2014 г.,  120 стр.,  мягкий переплет
Huge volume of data from domain specific applications such as medical, financial, telephone, shopping records and individuals are regularly generated. Sharing of these data is proved to be beneficial for data mining application. Since data mining often involves data that contains personally identifiable information and therefore releasing such...

35020 тг
Бумажная версия