Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Privacy preserving Data Mining by Inverse Frequent Item Set Mining. Data Mining Approach
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Ashwini J. Sawakhande
ISBN: 9786205488102
Год издания: 1905
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 64
Издательство: LAP LAMBERT Academic Publishing
Цена: 25287 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: An emerging research topic in data mining, known as privacy-preserving data mining (PPDM) is discussed in this book. It is an application of data mining research in response to privacy security in data mining. It is called a privacy-enhanced or privacy-sensitive data mining. Preservation of privacy in data mining has emerged as an absolute prerequisite for exchanging confidential information in terms of data analysis, validation, and publishing. This book provides a panoramic overview on new perspective and systematic interpretation of a list published literature's via their meticulous organization in subcategories. The PPDM techniques can be classified based on 3 Characteristics: data distribution, purposes of hiding, Data Mining algorithms.Data mining is very important tool used by organizations for providing better service, achieving greater profit, and better decision-making. But privacy and security concerns may create barrier in data mining task. These barriers can be removed by applying PPDM techniques and by ensuring security in data mining task. Many techniques have been proposed for PPDM, with each technique having some advantages over another in its own terms.
Ключевые слова: Data Minig, Big Data, PPDM, Inverse frequent Itemset Mining
Похожие издания
Отрасли знаний: Точные науки -> Информатика и программирование R Padmaja Kishore SLICING : A Privacy Preserving Data Publishing Mechanism. . 2019 г., 84 стр., мягкий переплет This article helps to understand slicing, a new operation which outperforms the conventional operations like Generalization and Bucketization. Slicing allows to do both Horizontal and Vertical Partition .Slicing protects Identity Disclosure with better data utility.slicing finds correlation between attributes and clusters the attributes using... | 24061 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование Kamakshi Pille Privacy Preserving Data Mining Algorithms. . 2019 г., 116 стр., мягкий переплет The greatest contribution to researchers, who are working on Privacy preservation issues in data mining. The author explores various privacy issues while performing data mining on large databases. Motivated by the privacy issues related to data mining operations in various domains, this work focuses on PPDM algorithms. Privacy issues have thrown... | 27134 тг | |
Сферы деятельности: Предпринимательская деятельность -> Менеджмент Kuncham Sreenivasa Rao,Changalasetty Suresh babu and Avula Damodaram Correlation based approach for hiding sensitive items in data mining. A novel approach for Privacy Preserving Data Mining. 2018 г., 168 стр., мягкий переплет The main goal of data mining is to extract high level or hidden information from large databases. Along with the advantage of extracting useful pattern, it also poses threats of revealing user’s sensitive information. We can hide sensitive information of the user by using privacy preservation data mining(PPDM). In data mining, association rule... | 39144 тг | |
Отрасли знаний: Общественные науки -> Экономика V.S. Thiyagarajan Privacy Preserving in Big Datasets. . 2016 г., 164 стр., мягкий переплет The main objective of this work is to develop privacy preserving clustering process with cost minimization for Big Data Processing. The aim of privacy preserving calculations is to extricate significant learning from a big amount of information while ensuring data were collected in a delicate way. The basic motive of the current investigation is... | 39002 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование -> Интернет и локальные сети Shampa Bhattacharyya and Amit Bhattacharyya Privacy Preserving Data Mining. Methods, Execution and Efficiency. 2015 г., 100 стр., мягкий переплет Data mining is under attack from privacy advocates because of a misunderstanding about what it actually is and a valid concern about how it’s generally done. This analysis shows how technology from the security community can change data mining for the better, providing all its benefits while still maintaining privacy. Recently, a new class of... | 29469 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование Sridhar Mandapati Privacy Preserving Data Mining using Optimization Methods. . 2014 г., 128 стр., мягкий переплет PPDM using optimization methods brings you up-to-date with various PPDM Algorithms, Randomization Method, Group Based Anonymization, Distributed Privacy-Preserving Data Mining and k-Anonymous Data Mining discussed. The performance of classification accuracy and the computational time of various data mining algorithms with and without anonymized... | 36272 тг | |
Отрасли экономики: Промышленность в целом Hitesh Chhinkaniwala and Sanjay Garg Privacy Preserving Data Mining - Issues & Techniques. Preserving privacy of data streams and large data sets while mining. 2014 г., 120 стр., мягкий переплет Huge volume of data from domain specific applications such as medical, financial, telephone, shopping records and individuals are regularly generated. Sharing of these data is proved to be beneficial for data mining application. Since data mining often involves data that contains personally identifiable information and therefore releasing such... | 35020 тг |