Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Support Vector Machines: smart support tools for mastitis detection.
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Djangsou Hagassou
ISBN: 9783659954511
Год издания: 2016
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 100
Издательство: LAP LAMBERT Academic Publishing
Цена: 21242 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли экономики:Код товара: 163122
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Mastitis is one of the major reasons of the reduction of both milk yield and quality, leading to strong lost of dairy ewe farmer revenue. In standard hygienic condition of sheep farming, clinical mastitis prevalence is about 5% of the flock. Unfortunately, it represents the tip of the iceberg whereas the submerge part of the iceberg is represented by subclinical mastitis, which in some cases can reach 65% or more. The current investigation presents an alternative approach to predict the presence of udder inflammation in dairy ewes through the application of Support Vector Machines (SVMs), a sub-discipline in the field of artificial intelligence. The milk lactose content (MLC) and milk electrical conductivity (MEC) are used as predictive variables and the milk somatic cell count (MSCC) as classifier. Data used was collected from a 10-years historical database of ARAS laboratory (Sardinian Regional Association of Farmers). The SVMs has shown a sensitivity and specificity of 62% and 75% respectively. Therefore, using SVMs as first screening system for udder inflammation detection could simplify the procedure before carrying out expensive and time-consuming bacteriological analysis.
Ключевые слова: Artificial Intelligence, SVMs, smart statistic tools, mastitis detection
Похожие издания
Отрасли знаний: Точные науки -> Информатика и программирование Jyothi Bellary and Keshava Reddy E. Scalability Issues of NER using Multi-Class Support Vector Machines. . 2016 г., 124 стр., мягкий переплет Named Entity Recognition (NER) is designed to extract and to categorize rigid designators in written text such as proper names, scientific species, and temporary expressions. There has been increasing interest in this area of research since the early 90's. In this book, we present a pattern shifting away from handcrafted rules, and towards machine... | 32741 тг | |
Отрасли экономики: Промышленность в целом Zden?k Vyoral Using support vector machines in fuzzy classification. . 2015 г., 56 стр., мягкий переплет Fuzzy classification is one of methods used for pattern classification, which is germane to many engineering applications. An output from fuzzy classification is an assignment of patterns to fuzzy classes. There are several methods for fuzzy classification; in this paper we propose a new method based on the soft margin support vector machines... | 21130 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование Thanh-Nghi Doan and Francois Poulet Large Scale Support Vector Machines Algorithms for Visual Recognition. . 2014 г., 164 стр., мягкий переплет Visual recognition remains an extremely challenging problem in computer vision. Most previous approaches have been evaluated on small datasets. However, ImageNet dataset with millions images for thousands classes poses more challenges for the next generation of vision mechanisms. Learning an efficient visual classifier and constructing a robust... | 46262 тг |