Ваш любимый книжный интернет-магазин
Перейти на
GlavKniga.SU
Ваш город: Алматы
Ваше местоположение – Алматы
 Да 
От вашего выбора зависит время и стоимость доставки
Корзина: пуста
Авторизация 
  Логин
  
  Пароль
  
Регистрация  Забыли пароль?

Поиск по каталогу 
(строгое соответствие)
ISBN
Фраза в названии или аннотации
Автор
Язык книги
Год издания
с по
Электронный носитель
Тип издания
Вид издания
Отрасли экономики
Отрасли знаний
Сферы деятельности
Надотраслевые технологии
Разделы каталога
худ. литературы

Financial Time Series Analysis. Chaos And Neurodynamics Approach

В наличии
Местонахождение: АлматыСостояние экземпляра: новый
Бумажная
версия
Автор: Antonio Sawaya
ISBN: 9783848415328
Год издания: 2012
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 76
Издательство: LAP LAMBERT Academic Publishing
Цена: 30358 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:
Код товара: 479491
Способы доставки в город Алматы *
комплектация (срок до отгрузки) не более 2 рабочих дней
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK)
Курьерская доставка CDEK из города Москва
Доставка Почтой России из города Москва
      Аннотация: This work aims at combining the Chaos theory postulates and Artificial Neural Networks classification and predictive capability, in the field of financial time series prediction. The cognitive approach suggested, is inspired by the capability of some chartists to predict the direction of an index by looking at the price time series. Thus, in this work, the calculation of the embedding dimension and the separation, in Takens’ embedding theorem for phase space reconstruction, is not limited to False Nearest Neighbor, Differential Entropy or other specific method, rather, this work is interested in all embedding dimensions and separations that are regarded as different ways of looking at a time series by different chartists, based on their expectations. Prior to the prediction, the embedded vectors of the phase space are classified with Fuzzy-ART, then, for each class a back propagation Neural Network is trained to predict the last element of each vector, whereas all previous elements of a vector are used as features.
Ключевые слова: artificial intelligence, Neural Networks, Chaos, Finance, STOCK MARKETS, Monte Carlo Simulation, Lyapunov, Fractals, predictive modeling, Hurst, cognitive process. time series, Takens Embedding Theorem
Похожие издания
Rajarathinam Arunachalam and Manikandan B.
Modeling Financial Time Series Data..
2024 г.,  148 стр.,  мягкий переплет
In recent years, stock markets have become an important part of many countries' economies. This increasing importance of stock markets has motivated me. Economists to predict stock prices and financial returns. In addition, estimating stock market fluctuations is an important practice among investors and policymakers. Suitable statistical tools...

43431 тг
Бумажная версия
Отрасли знаний: Точные науки -> Математика
Anuj Kumar
Introduction & Review Collection for Analysis of Financial Time Series. Basics, Reviews, Concepts, Methods.
2012 г.,  72 стр.,  мягкий переплет
In this book, we have studied the properties of wavelet transform and their uses in the analysis of time series. A large number of researchers are now engaged in applying wavelets to different situations, and all are seem to report favorable results. Current physical applications of wavelets include a wide variety such as climate analysis,...

30216 тг
Бумажная версия
Отрасли знаний: Точные науки -> Математика -> Статистика
Antonio Stoyanov
Machine Learning for Financial Time Series. Identifying Prediction Patterns in Financial Time Series Using a Genetic Algorithm.
2012 г.,  76 стр.,  мягкий переплет
This work presents a framework based on a self-learning genetic algorithm for discovering prediction patterns in financial time series. By modifying a complex mathematical algorithm for evolutionary optimization in a manner more suitable for financial time series, specifics typical to asset trading were taken into account and were reflected in the...

23489 тг
Бумажная версия
Отрасли знаний: Точные науки -> Математика -> Анализ
Jaydip Sen and Tamal Datta Chaudhuri
Analysis and Forecasting of Financial Time Series Using R. Models and Applications.
2017 г.,  264 стр.,  мягкий переплет
Analysis and prediction of stock market time series data have attracted considerable interest from the research community over the last decade. Rapid development and evolution of sophisticated algorithms for statistical analysis of time series data and availability of high-performance hardware have made it possible to process and analyze high...

51251 тг
Бумажная версия
Отрасли знаний: Точные науки -> Математика -> Статистика
Kofi Nyamekye and Joyce Nyamekye
Empirical Risk Modeling of Financial Time Series using Value at Risk. .
2015 г.,  52 стр.,  мягкий переплет
The aim of this book is to highlight and illustrate selected quantitative techniques for estimating financial risk. The first module in risk assessment is concerned with the risk measure used, whereas the second module is based on the risk estimation technique. The process of risk assessment involves the Value at Risk, popularly known as VaR with...

22584 тг
Бумажная версия
Отрасли знаний: Точные науки -> Математика
Reza Habibi
Applications of Statistical Engineering Tools in Financial Time Series. .
2013 г.,  52 стр.,  мягкий переплет
Statistical engineering has capabilities. In this note, we (Reza Habibi) survey the application of statistical engineering in financial time series. The first chapter considers the filtering of a diffusion process. The second chapter is designed to study the adaptive filter and its applications. The third chapter studies the Wiener system...

29506 тг
Бумажная версия