Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Face Recognition System. Using Image Processing
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Jetti Anusha,Andavarapu Sravani and Ponnaganti Rama Devi
ISBN: 9786204717852
Год издания: 1905
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 104
Издательство: LAP LAMBERT Academic Publishing
Цена: 34471 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 706258
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Face recognition algorithm perform very unreliably when the pose of the probe face is different from the stored face typical feature vectors vary more with pose than with identity. We propose a generative model that creates a one-to-many mapping from an idealized “identity” space to the observed data space. In this identity space, the representation for each individual does not vary with pose. The measured feature vector is generated by a pose contingent linear transformation of the identity vector in the presence of noise. Existing methods for performing face recognition in the presence of blur are based on the convolution model and cannot handle non-uniform blurring situations that frequently arise from tilts and rotations in hand-held cameras. In this paper, we propose a methodology for face recognition in the presence of space varying motion blur comprising of arbitrarily-shaped kernels. We model the blurred face as a convex combination of geometrically transformed instances of the focused gallery face, and show that the set of all images obtained by non-uniformly blurring a given image forms a convex set.
Ключевые слова: NU-MOB, MOBIL, MOBILAP, Face recognition, image processing
Похожие издания
Отрасли знаний: Точные науки -> Информатика и программирование Adebayo Kolawole John Biometric Authentication: An Hybrid Face Recognition System Model. A Face Recognition System using Principal Component Analysis and Feature-Based technique. 2012 г., 96 стр., мягкий переплет A biometric authentication system based on face recognition is implemented and described in this work. The proposed algorithm is a combination of Principal Component Analysis (PCA) and a Feature based technique which is based on the two modalities used in face recognition i.e. The Holistic approach and Feature-based approach. PCA which was... | 31069 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование T. M. Kodinariya Hybrid N-Feature Face Recognition System. Statistical Approach. 2012 г., 216 стр., мягкий переплет The work explores the area of Hybrid Face Recognition using neural networks as classifier. The recognition system operates in two modes: training and classification. Training mode involves normalization of the face images (training set), extracting appropriate features using Principle Component Analysis (PCA) and Independent Component Analysis... | 45371 тг | |
Отрасли экономики: Приборостроение -> Производство электронных компонентов Yagnesh Parmar 3D Face Recognition Using PCA. The Robust Face Recognition system using Matlab. 2012 г., 64 стр., мягкий переплет This book describes a face recognition system that overcomes the problem of changes in gesture and mimics in three-dimensional (3D) range images. Here, we propose a local variation detection and restoration method based on the two-dimensional (2D) principal component analysis (PCA). The depth map of a 3D facial image is first smoothed using median... | 29932 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование Rizoan Toufiq and Md. Rabiul Islam Face Recognition Using Multiple Classifier Fusion. Multiple Classifier Fusion Based Face Recognition System for Person Identification. 2012 г., 120 стр., мягкий переплет Recently classifier combination methods have proved to be an effective tool to increase the performance of pattern recognition applications. There are numbers of different Decision Support System (DSS) that has developed to operate on the minimum input data set or the output data set to give the correct decision. A number of classifier fusion ... | 31921 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование Benard Ogere ekemu and Aisha Namirimu Face Recognition System as a Method of Authentication. . 2019 г., 64 стр., мягкий переплет This study invested the face recognition system as a method of authentication for recognition of students in Mengo Senior secondary school. The objectives of the study where to study the inherent weaknesses of other technologies that are already existing, to determine the requirements for the Face Recognition Systems as a method of authentication... | 25124 тг | |
Отрасли экономики: Промышленность в целом Ahmed Shamil Mustafa and Nasharuddin Zainal Face Recognition System Based on Hybrid Features Extraction. . 2018 г., 84 стр., мягкий переплет Face recognition systems are the most effective protection systems. These systems have evolved day after day by developing an effective algorithm. In this work, We will learn how these systems are working and the possible way of designing a reliable system. However, this work includes hybrid algorithm which is designed to become the system more... | 23720 тг | |
Отрасли экономики: Приборостроение -> Производство электронных компонентов Asrani Lit,Muhammad Shaah Fihee Misman and Fariza Mahyan Real Time Face Recognition System. Principle Component Analysis Algorithm. 2016 г., 68 стр., мягкий переплет Face recognition has received substantial attention from public around the world. The interest from the general public is mostly due to the recent events of terror around the world, which has increased the demand for useful security systems. In this project, Principle Component Analysis (PCA) act as efficient method to develop face recognition... | 23152 тг | |
Отрасли экономики: Приборостроение -> Производство электронных компонентов Afifa Abbas Design & Implementation of High Performance Face Recognition System. . 2016 г., 96 стр., мягкий переплет In this book, we have proposed a novel hardware architecture for face-recognition system. In order to make the system cost effective we have used a simple yet efficient algorithm of face-recognition system. We have designed, implemented and verified the algorithm in a cyclone III Field Programmable Gate Array (FPGA) chip. Altera DE0 development... | 34186 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование Anteneh Yirgu and Daniel Kassa Ethiopian face Recognition System Across Ages. . 2015 г., 104 стр., мягкий переплет Face recognition is one of the most attractive research area in the field of pattern recognition and computer vision due to its interesting applications like security, access control, passport verification, human computer interaction, surveillance, etc. Face recognition systems have been proven sensitive to variations such as illumination,... | 31828 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование Divyarajsinh Parmar,Yagnesh Parmar and Brijesh Mehta 3D Face Recognition System Based on 3D Eigenfaces. . 2013 г., 56 стр., мягкий переплет A face recognition system that solves the problem of changes in facial expression and mimics in 3D range images. So here, we propose a local variation detection and restoration method based eigenfaces using the principal component analysis (PCA). The depth map of a 3D facial image is first smoothed using median filter to minimize the local... | 24840 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование -> Информационные технологии Mohamed El aroussi Information Fusion towards a Robust Face Recognition System. . 2014 г., 152 стр., мягкий переплет As a hot research topic since the eighties, face recognition still seems to be a di?cult and largely problem. Distortions caused by variations in illumination, expression and pose are the main challenges to be dealt with by researchers in this ?eld. E?cient recognition algorithms, robust against such distortions, are the main motivations of this... | 39875 тг |