Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Feature Extraction and Classification Methods of Texture Images. Performance Analysis of Feature Extraction Methods Under Different Classifiers
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Ajay Kumar Singh,Dolly Choudhary and Shamik Tiwari
ISBN: 9783659417399
Год издания: 2013
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 96
Издательство: LAP LAMBERT Academic Publishing
Цена: 34186 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: In texture classification the goal is to assign an unknown sample texture image to one of a set of known texture classes.Important applications include industrial and bio medical surface inspection, for example for defects and disease, ground classification and segmentation of satellite or aerial imagery, segmentation of textured regions in document analysis, and content-based access to image databases. However, despite many potential areas of application for texture analysis in industry there is only a limited number of successful examples. A major problem is that textures in the real world are often not uniform, due to changes in orientation, scale or other visual appearance. In addition, the degree of computational complexity of many of the proposed texture measures is very high.A wide variety of techniques for describing image texture have been proposed in literature. This work is an analysis of texture image classification in different classifier under two different features called wavelet and statistical. The result shows that image classification with wavelet feature and feed forward neural network gives better result.
Ключевые слова: classification, Pattern recognition, Feature extraction, texture
Похожие издания
Отрасли знаний: Точные науки -> Информатика и программирование Shaik Akbar,Kamisetti Nageswara Rao and Divya Midhunchakkaravarthy AN EFFICIENT FEATURE EXTRACTION AND CLASSIFICATION BASED MULTI-LEVEL. DEEP LEARNING FRAMEWORK FOR DIABETIC RETINOPATHY DETECTION. 1905 г., 188 стр., мягкий переплет This book provides An Efficient Feature Extraction and Classification based Multi –level Deep Learning Frame work for Diabetic Retinopathy Detection model has better efficiency compared to the state of art of conventional approaches. Diabetic retinopathy is a micro vascular disease that induces a number of changes in the retina. Micro aneurysms,... | 50665 тг | |
Отрасли экономики: Приборостроение -> Производство электронных компонентов Asfaw Alene Ethiopian Banknote Denomination Classification & Fake Detection System. An optimal feature extraction and classification technique. 2019 г., 124 стр., мягкий переплет Forgery is one of the critical problems affecting cash transactions. Forged banknotes are becoming serious threats hampering the smooth transactions in Ethiopia. Hence, the availability of such fake notes in the market needs the automation of the money transaction system. The banking industries are unable to fully utilize self-serving devices... | 35181 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование Parshuram Kamble and Ravindra Hegadi Document Image Analysis. Image Processing, Low and High Level feature extraction, Classification. 2019 г., 92 стр., мягкий переплет The offices like Bank, Post office and Public Service Units (PSU), officials prepare documents manually by entering data through keyboard into computer system. Nowadays, in every field, automation is done with the help of computer vision, pattern recognition and machine learning. Pattern recognition has the ability to analyze the pattern and... | 34044 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование Sule T. Anjomshoae and Mohd Shafry Bin Mohd Rahim Feature Extraction and Classification Algorithm for Rubber Tree Leaf. . 2018 г., 120 стр., мягкий переплет Rubber is one of the major sources of national income in Malaysia. Malaysian Rubber Board (MRB) is responsible for monitoring the quality of rubber to maintain a successful breeding program. One of the important factors that affect the quality of raw rubber is the clonal origin of the tree. In current practice, clone inspectors verify the clone... | 32397 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование Surendra Kumar Feature extraction and classification technique for chronic alcoholism. . 2016 г., 104 стр., мягкий переплет In this study, the magnitude and spatial distribution of frequency spectrum in the resting electroencephalogram (EEG) were examined to address the effect of alcoholism on the motor cortex region. The EEG signals for chronic alcoholic subjects were acquired from motor cortex region and Hilbert Huang Transform was applied for Feature Extraction of... | 34471 тг |