Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Feature Extraction and Classification Algorithm for Rubber Tree Leaf.
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Sule T. Anjomshoae and Mohd Shafry Bin Mohd Rahim
ISBN: 9786137382097
Год издания: 2018
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 120
Издательство: LAP LAMBERT Academic Publishing
Цена: 32397 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 203991
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Rubber is one of the major sources of national income in Malaysia. Malaysian Rubber Board (MRB) is responsible for monitoring the quality of rubber to maintain a successful breeding program. One of the important factors that affect the quality of raw rubber is the clonal origin of the tree. In current practice, clone inspectors verify the clone type manually using leaf features. An automated clone classification system is needed to facilitate the inspection process. There are several features of rubber tree leaf to differentiate clone types including leaf tip, leaf base, the form of the leaf, and leaf margin. This book provides an in-depth look at these features and it explores several feature extraction methods to analyze the effectiveness of these methods.
Ключевые слова: Feature extraction, Template matching, Overlapping object, Key point extraction, Rubber tree leaves
Похожие издания
Отрасли знаний: Точные науки -> Информатика и программирование Shaik Akbar,Kamisetti Nageswara Rao and Divya Midhunchakkaravarthy AN EFFICIENT FEATURE EXTRACTION AND CLASSIFICATION BASED MULTI-LEVEL. DEEP LEARNING FRAMEWORK FOR DIABETIC RETINOPATHY DETECTION. 1905 г., 188 стр., мягкий переплет This book provides An Efficient Feature Extraction and Classification based Multi –level Deep Learning Frame work for Diabetic Retinopathy Detection model has better efficiency compared to the state of art of conventional approaches. Diabetic retinopathy is a micro vascular disease that induces a number of changes in the retina. Micro aneurysms,... | 50665 тг | |
Отрасли экономики: Приборостроение -> Производство электронных компонентов Asfaw Alene Ethiopian Banknote Denomination Classification & Fake Detection System. An optimal feature extraction and classification technique. 2019 г., 124 стр., мягкий переплет Forgery is one of the critical problems affecting cash transactions. Forged banknotes are becoming serious threats hampering the smooth transactions in Ethiopia. Hence, the availability of such fake notes in the market needs the automation of the money transaction system. The banking industries are unable to fully utilize self-serving devices... | 35181 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование Parshuram Kamble and Ravindra Hegadi Document Image Analysis. Image Processing, Low and High Level feature extraction, Classification. 2019 г., 92 стр., мягкий переплет The offices like Bank, Post office and Public Service Units (PSU), officials prepare documents manually by entering data through keyboard into computer system. Nowadays, in every field, automation is done with the help of computer vision, pattern recognition and machine learning. Pattern recognition has the ability to analyze the pattern and... | 34044 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование Surendra Kumar Feature extraction and classification technique for chronic alcoholism. . 2016 г., 104 стр., мягкий переплет In this study, the magnitude and spatial distribution of frequency spectrum in the resting electroencephalogram (EEG) were examined to address the effect of alcoholism on the motor cortex region. The EEG signals for chronic alcoholic subjects were acquired from motor cortex region and Hilbert Huang Transform was applied for Feature Extraction of... | 34471 тг | |
Отрасли экономики: Промышленность в целом Ajay Kumar Singh,Dolly Choudhary and Shamik Tiwari Feature Extraction and Classification Methods of Texture Images. Performance Analysis of Feature Extraction Methods Under Different Classifiers. 2013 г., 96 стр., мягкий переплет In texture classification the goal is to assign an unknown sample texture image to one of a set of known texture classes.Important applications include industrial and bio medical surface inspection, for example for defects and disease, ground classification and segmentation of satellite or aerial imagery, segmentation of textured regions in... | 34186 тг |