Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
DEEP LEARNING TECHNIQUES TO DIAGNOSE DISEASES. Diagnosing diseases by using Convolutional neural networks
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Ömer Sevinç
ISBN: 9786206156680
Год издания: 1905
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 88
Издательство: LAP LAMBERT Academic Publishing
Цена: 26139 тг
Положить в корзину
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: Artificial intelligence (AI) has emerged as a promising tool in healthcare for diagnosing diseases. With the help of machine learning algorithms, AI can analyze large datasets of medical images, patient records, and genetic information to identify patterns and make accurate predictions. AI can assist healthcare professionals in diagnosing diseases such as cancer, heart disease, and Alzheimer's disease, as well as rare and complex diseases that are difficult to diagnose. AI-based diagnostic tools have the potential to improve patient outcomes, reduce healthcare costs, and save lives.
Ключевые слова: Deep Learning, Disease Diagnose, CNN, Artificial Intellegince
Похожие издания
Отрасли экономики: Приборостроение -> Производство электронных компонентов Nirupam Shome Automatic Speaker Recognition in Diverse Data Condition. A System Based on Signal Processing and Deep Learning Techniques. 1905 г., 208 стр., мягкий переплет Speaker recognition is the process of identifying and verifying a speaker’s voiceprints from several voices. The main objective of speaker recognition is to create a system that is capable of verifying a person’s voice and can also be proficient in identifying a person from his/her voice. This book discusses the challenges of the... | 47825 тг | |
Отрасли знаний: Общественные науки -> Экономика Kavitha K,Naresh Tangudu and Suneetha Ch A DESIGN OF SARCASM SENTIMENT DETECTION AND CLASSIFICATION MODEL. A DESIGN OF SARCASM SENTIMENT DETECTION ANDCLASSIFICATION MODEL USINGDEEP LEARNING TECHNIQUES. 1905 г., 180 стр., мягкий переплет evaluating the sentiment of all texts provides organizations with an overview of how positive and negative users are on a given issue. To use sarcasm is to be in a condition of discourse in which the author describes something obviously hostile to the listener or another person with the intent to insult or ridicule them. It is challenging to... | 46830 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование Sandhiya S and Palani U Novel Disease Prediction System Using Hybrid Deep Learning Techniques.. 1905 г., 164 стр., мягкий переплет This Book has been carried out through three different models with a different combination of feature selection and deep learning techniques. The first model proposed the combination of the new Enhanced Grey-Wolf Optimization-based Feature Selection Algorithm (EGWO-FSA) and Deep Belief Network (DBN) for diagnosing heart, diabetes, and cancer... | 46262 тг | |
Отрасли знаний: Точные науки -> Математика -> Анализ HUMERA kHANAM M. MACHINE LEARNING AND DEEP LEARNING TECHNIQUES. Sentiment Analysis Using Machine Learning and Deep Learning Techniques. 1905 г., 56 стр., мягкий переплет Sentiment Analysis has become a hot-trend topic of scientific and market research in the field of Natural Language Processing (NLP) and Machine Learning. Sentiment classification is the automated process of identifying opinions in a text and labeling them as positive, negative, or neutral, based on the emotions customers express within them.... | 28391 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование Aditya Patel,Nidhi Singh and Ajay Soni Machine Learning for Underwater Hazy Image. Deep Learning Techniques. 1905 г., 72 стр., мягкий переплет Image performance in underwater robots is one of the most challenging problems for autonomous underwater robotics due to light transmission in water. Although image restoration techniques can effectively remove a haze from a damaged image, they require multiple images from the same location making it difficult to use in real time. Considering the... | 23635 тг | |
Отрасли экономики: Промышленность в целом Roger Posada Moyano Semantic segmentation of images. Using Deep Learning Techniques. 1905 г., 68 стр., мягкий переплет This book focuses on deep learning techniques in the application of semantic segmentation of images. Its objective is to clearly understand the performance of Neural Networks in different backgrounds, by training them how to learn from different images, using a deep learning-based approach. The proposed project is built around a VGG-16... | 23493 тг | |
Отрасли экономики: Промышленность в целом Vrushali Dhanokar Classifying Chest Pathology Images Using Deep Learning Techniques. To Develop Computer Based System for Diagnosis of Healthy vs Pathology Chest X-Ray Images to Assist Radiologists. 2020 г., 68 стр., мягкий переплет Chest radiographs are the most common examination in radiology in today’s era. They are essential and very helpful for the supervision of various diseases associated with high mortality and display a wide range of potential information about various diseases. The most common verdicts in chest X-rays include Tuberculosis, Cardiomegaly &... | 23493 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование K Ramalakshmi,T Jemima Jebaseeli and R Venkatesan Prediction Of Gender From Facial Image Using Deep Learning Techniques. Gender Recognition. 2020 г., 52 стр., мягкий переплет Gender recognition is a process of recognizing a person’s gender from their facial image using deep learning. The posed variation, illumination, and occlusion are some of the factors that affect in recognizing faces. These are reduced by increasing the accuracy of prediction. The network used for training the system is Convolutional Neural... | 22924 тг |