Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Support Vector Machine (SVM) Aggregation Modelling. Spatio-temporal Air Pollution Analysis
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Shahid Ali
ISBN: 9786203841411
Год издания: 1905
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 192
Издательство: LAP LAMBERT Academic Publishing
Цена: 43386 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли знаний:Код товара: 712676
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: The study of this book is concerned with computation methods for environmental data analysis in order to enable better and faster decision making when dealing with environmental problems. This book addressed the spatio-temporal problem using decentralized computational technique named Scalable SVM Ensemble Learning Method (SSELM). Evaluation criteria for computational air pollution analysis includes: classification accuracy, prediction, spatio-temporal and decentralized analysis, we assert that these criteria can be improved using the proposed SSELM. Special consideration is given to distributed ensemble in order to resolve the spatio-temporal data collection problem (i.e. the data collected from multiple monitoring stations dispersed over a geographical location). Moreover, the experimental results demonstrated that the proposed SSELM produced impressive results compared to SVM ensemble for air pollution analysis in Auckland region.<p>The study of this book is concerned with computation methods for environmental data analysis in order to enable better and faster decision making when dealing with environmental problems.</p><p> </p><p> </p><p>This book addressed the spatio-temporal problem using decentralized computational technique named Scalable SVM Ensemble Learning Method (SSELM). Evaluation criteria for computational air pollution analysis includes: classification accuracy, prediction, spatio-temporal and decentralized analysis, we assert that these criteria can be improved using the proposed SSELM.</p><p> </p><p> </p><p>Special consideration is given to distributed ensemble in order to resolve the spatio-temporal data collection problem (i.e. the data collected from multiple monitoring stations dispersed over a geographical location). Moreover, the experimental results demonstrated that the proposed SSELM produced impressive results compared to SVM ensemble for air pollution analysis in Auckland region.</p>
Ключевые слова: SVM Ensemble, Ensemble learning, Air Pollution Analysis
Похожие издания
Отрасли экономики: Приборостроение -> Производство электронных компонентов Chandrasekhar Paseddula Support Vector Machine Based Speech Emotion Recognition. A Practical Implementation. 1905 г., 104 стр., мягкий переплет The results obtained in this system using MFCC+LPCC with SVM arecommendable. The recognition rate ofsystem is 81.2% for IITKGP-SESC, 78.6% for EmodB and 70% for real time recorded database. The MFCCs and LPCCs corresponding to each utterance of the each emotion of databases have been computed and their fusion is used for feature extraction along... | 34935 тг | |
Отрасли экономики: Приборостроение -> Производство электронных компонентов Neela Guruswamy Skin cancer detection using support vector machine. Cancer Identification. 2020 г., 60 стр., мягкий переплет Skin cancer is an abnormal growth of skin cells in today’s modern world, most often develops on body exposed to sun light, but it can occur anywhere on the body. Most of the skin cancer at beginning stage is curable. Patient’s life can be saving from skin cancer by early & fast detection. Early detection of skin cancer in achievable at... | 23208 тг | |
Отрасли экономики: Приборостроение -> Производство электронных компонентов Aniruddha Shelotkar and Dattakrushna Metange Content Based Image Retrieval Using Support Vector Machine (SVM). . 2019 г., 68 стр., мягкий переплет Content Based Image Retrieval (CBIR) is a developing trend in Digital Image Processing for searching and retrieving the query image from wide range of databases. Conventional content-based image retrieval (CBIR) schemes have following limitations: 1. It is slow 2. difficult to label negative examples; 3. Accuracy is poor in a single step; we... | 23493 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование Hussein Samma and Junita Mohamad-Saleh Optimized Two-Stage Ensemble Model for License Plate Recognition. Memetically Optimized Two-Stage Fuzzy Support Vector Machine Ensemble Model for License Plate Recognition. 2018 г., 132 стр., мягкий переплет Pattern recognition models play an important role in many real-world applications such as text detection and object recognition. Numerous methodologies including Computational Intelligence (CI) models have been developed in the literature to tackle image-based pattern recognition problems. Focused on CI models, this research presents efficient... | 36414 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование -> Интернет и локальные сети Muhammad Anwarul Azim,Dong Seong Kim and Jong Sou Park Privacy Preserving Support Vector Machine Classification in WSN. . 2018 г., 60 стр., мягкий переплет The increasing prominence of Wireless Sensor Network (WSN) is stimulating greater interest in developing many application areas. WSNs promise viable solutions aiming at many monitoring problems despite energy, communication, computation & storage constraints. The security issues, data privacy, confidentiality and integrity become vital when... | 21272 тг | |
Отрасли экономики: Агропромышленный комплекс -> Растениеводство -> Садоводство Djangsou Hagassou Support Vector Machines: smart support tools for mastitis detection. . 2016 г., 100 стр., мягкий переплет Mastitis is one of the major reasons of the reduction of both milk yield and quality, leading to strong lost of dairy ewe farmer revenue. In standard hygienic condition of sheep farming, clinical mastitis prevalence is about 5% of the flock. Unfortunately, it represents the tip of the iceberg whereas the submerge part of the iceberg is represented... | 21242 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование Jyothi Bellary and Keshava Reddy E. Scalability Issues of NER using Multi-Class Support Vector Machines. . 2016 г., 124 стр., мягкий переплет Named Entity Recognition (NER) is designed to extract and to categorize rigid designators in written text such as proper names, scientific species, and temporary expressions. There has been increasing interest in this area of research since the early 90's. In this book, we present a pattern shifting away from handcrafted rules, and towards machine... | 32741 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование Victoria Cupet Oracle Data Mining and the implementation of Support Vector Machine. . 2015 г., 88 стр., мягкий переплет Contemporary commercial databases are putting an increased accentuation on analytic abilities. The data mining technology is very important when we are referring to large volumes of data for analysis. Regarding novel data if we use modern data mining techniques we may improve their accuracy and generalization. But as we all know attaining results... | 18879 тг | |
Отрасли экономики: Промышленность в целом Zden?k Vyoral Using support vector machines in fuzzy classification. . 2015 г., 56 стр., мягкий переплет Fuzzy classification is one of methods used for pattern classification, which is germane to many engineering applications. An output from fuzzy classification is an assignment of patterns to fuzzy classes. There are several methods for fuzzy classification; in this paper we propose a new method based on the soft margin support vector machines... | 21130 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование Thanh-Nghi Doan and Francois Poulet Large Scale Support Vector Machines Algorithms for Visual Recognition. . 2014 г., 164 стр., мягкий переплет Visual recognition remains an extremely challenging problem in computer vision. Most previous approaches have been evaluated on small datasets. However, ImageNet dataset with millions images for thousands classes poses more challenges for the next generation of vision mechanisms. Learning an efficient visual classifier and constructing a robust... | 46262 тг | |
Отрасли экономики: Машиностроение -> Химическое машиностроение Zahid H. Khokhar Support Vector Machine Aur CFD pipe injection Flow. . 2013 г., 116 стр., мягкий переплет Waylay experimental and numerical side hot water injection model simulations are a capacity of this succinct terse sausion peachy episode by applying SVM to unique data generated at totally thermal contaction. Results out in the open are gorgeously attractive to examine, scrutinize, weigh up and assess with a fuzzy logic rule base model creating a... | 32457 тг | |
Отрасли знаний: Гуманитарные науки -> Психология Pallavi Baviskar Support Vector Machine, Projection Histogram for Math Expression. Based on Handwritten Mathematical Expression. 2013 г., 92 стр., мягкий переплет This book provides information about mathematical expression recognition with one of the best technique for recognition and classification. Mathematical symbols and operators are represented in same way in different languages, which is useful to most of the researchers who work on character recognition in various languages. Projection histogram is... | 31605 тг |