Поиск по каталогу |
(строгое соответствие)
|
- Профессиональная
- Научно-популярная
- Художественная
- Публицистика
- Детская
- Искусство
- Хобби, семья, дом
- Спорт
- Путеводители
- Блокноты, тетради, открытки
Support Vector Machine Based Speech Emotion Recognition. A Practical Implementation
В наличии
Местонахождение: Алматы | Состояние экземпляра: новый |
Бумажная
версия
версия
Автор: Chandrasekhar Paseddula
ISBN: 9786206738800
Год издания: 1905
Формат книги: 60×90/16 (145×215 мм)
Количество страниц: 104
Издательство: LAP LAMBERT Academic Publishing
Цена: 37641 тг
Положить в корзину
Позиции в рубрикаторе
Отрасли экономики:Код товара: 760818
Способы доставки в город Алматы * комплектация (срок до отгрузки) не более 2 рабочих дней |
Самовывоз из города Алматы (пункты самовывоза партнёра CDEK) |
Курьерская доставка CDEK из города Москва |
Доставка Почтой России из города Москва |
Аннотация: The results obtained in this system using MFCC+LPCC with SVM arecommendable. The recognition rate ofsystem is 81.2% for IITKGP-SESC, 78.6% for EmodB and 70% for real time recorded database. The MFCCs and LPCCs corresponding to each utterance of the each emotion of databases have been computed and their fusion is used for feature extraction along with their delta and double-delta coefficients. These extracted features of training files are trained to the SVM model. Later the features of test files are given as input to SVM classifier for prediction. Then the classification of testing samples is done and the percentage of both matched and mismatched emotion is computed using confusion matrix. The performance of the real time recorded database is limited by the external factors which affect the speaker’s utterances like noise in signal, environment where recording is carried out. The performance can be increased by using high quality audio devices in noise free environment. Also large number of training samples turn out to increase performance. To conclude, it can be firmly stated that despite certain limitations, this system provides appreciable efficiency and accuracy.
Ключевые слова: Speech Emotion, SVM, Speech Emotion Recognition, Mel Frequency Cepstral Coefficients, Linear Predictive Cepstral Coefficiens
Похожие издания
Отрасли знаний: Точные науки -> Информатика и программирование Shahid Ali Support Vector Machine (SVM) Aggregation Modelling. Spatio-temporal Air Pollution Analysis. 1905 г., 192 стр., мягкий переплет The study of this book is concerned with computation methods for environmental data analysis in order to enable better and faster decision making when dealing with environmental problems. This book addressed the spatio-temporal problem using decentralized computational technique named Scalable SVM Ensemble Learning Method (SSELM). Evaluation... | 46579 тг | |
Отрасли экономики: Приборостроение -> Производство электронных компонентов Neela Guruswamy Skin cancer detection using support vector machine. Cancer Identification. 2020 г., 60 стр., мягкий переплет Skin cancer is an abnormal growth of skin cells in today’s modern world, most often develops on body exposed to sun light, but it can occur anywhere on the body. Most of the skin cancer at beginning stage is curable. Patient’s life can be saving from skin cancer by early & fast detection. Early detection of skin cancer in achievable at... | 24982 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование Sanjay Gharde Support Vector Machine for Handwritten Numeral Recognition. Based on Indian Devanagari Script. 2012 г., 108 стр., мягкий переплет This book is beneficial for those researchers who are working on Mahine Learning techniques, Support Vector Machine, Handwritten Characters of any language or Pattern Recognition. Handwritten character recognition is one of the application domains in pattern classification. Recognition of Handwritten Devanagari Numerals/ Characters is a... | 31495 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование Muhammad Farhan Khan and Muhammad Asif Zakriyya Speech Recognition with efficient use of Support Vector Machines. A comparison between Linear Discriminant Analysis and Support vector machines. 2012 г., 92 стр., мягкий переплет The book in hand provides the reader with the basics of speech as well as in-depth technicalities of accurate recognition by use of two different artificial intelligence techniques. The literature review presented in a number of chapters, refines user's concepts about the phonetics and mel frequency ceptstral cofficients that characterize speech... | 30926 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование -> Интернет и локальные сети Muhammad Anwarul Azim,Dong Seong Kim and Jong Sou Park Privacy Preserving Support Vector Machine Classification in WSN. . 2018 г., 60 стр., мягкий переплет The increasing prominence of Wireless Sensor Network (WSN) is stimulating greater interest in developing many application areas. WSNs promise viable solutions aiming at many monitoring problems despite energy, communication, computation & storage constraints. The security issues, data privacy, confidentiality and integrity become vital when... | 22868 тг | |
Отрасли экономики: Агропромышленный комплекс -> Растениеводство -> Садоводство Djangsou Hagassou Support Vector Machines: smart support tools for mastitis detection. . 2016 г., 100 стр., мягкий переплет Mastitis is one of the major reasons of the reduction of both milk yield and quality, leading to strong lost of dairy ewe farmer revenue. In standard hygienic condition of sheep farming, clinical mastitis prevalence is about 5% of the flock. Unfortunately, it represents the tip of the iceberg whereas the submerge part of the iceberg is represented... | 22703 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование Jyothi Bellary and Keshava Reddy E. Scalability Issues of NER using Multi-Class Support Vector Machines. . 2016 г., 124 стр., мягкий переплет Named Entity Recognition (NER) is designed to extract and to categorize rigid designators in written text such as proper names, scientific species, and temporary expressions. There has been increasing interest in this area of research since the early 90's. In this book, we present a pattern shifting away from handcrafted rules, and towards machine... | 35181 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование Victoria Cupet Oracle Data Mining and the implementation of Support Vector Machine. . 2015 г., 88 стр., мягкий переплет Contemporary commercial databases are putting an increased accentuation on analytic abilities. The data mining technology is very important when we are referring to large volumes of data for analysis. Regarding novel data if we use modern data mining techniques we may improve their accuracy and generalization. But as we all know attaining results... | 20163 тг | |
Отрасли экономики: Промышленность в целом Zden?k Vyoral Using support vector machines in fuzzy classification. . 2015 г., 56 стр., мягкий переплет Fuzzy classification is one of methods used for pattern classification, which is germane to many engineering applications. An output from fuzzy classification is an assignment of patterns to fuzzy classes. There are several methods for fuzzy classification; in this paper we propose a new method based on the soft margin support vector machines... | 22726 тг | |
Отрасли знаний: Точные науки -> Информатика и программирование Thanh-Nghi Doan and Francois Poulet Large Scale Support Vector Machines Algorithms for Visual Recognition. . 2014 г., 164 стр., мягкий переплет Visual recognition remains an extremely challenging problem in computer vision. Most previous approaches have been evaluated on small datasets. However, ImageNet dataset with millions images for thousands classes poses more challenges for the next generation of vision mechanisms. Learning an efficient visual classifier and constructing a robust... | 49813 тг | |
Отрасли экономики: Машиностроение -> Химическое машиностроение Zahid H. Khokhar Support Vector Machine Aur CFD pipe injection Flow. . 2013 г., 116 стр., мягкий переплет Waylay experimental and numerical side hot water injection model simulations are a capacity of this succinct terse sausion peachy episode by applying SVM to unique data generated at totally thermal contaction. Results out in the open are gorgeously attractive to examine, scrutinize, weigh up and assess with a fuzzy logic rule base model creating a... | 34897 тг | |
Отрасли знаний: Гуманитарные науки -> Психология Pallavi Baviskar Support Vector Machine, Projection Histogram for Math Expression. Based on Handwritten Mathematical Expression. 2013 г., 92 стр., мягкий переплет This book provides information about mathematical expression recognition with one of the best technique for recognition and classification. Mathematical symbols and operators are represented in same way in different languages, which is useful to most of the researchers who work on character recognition in various languages. Projection histogram is... | 34044 тг |